ENERGY

INDEX OF MAJOR OIL AND GAS FIELDS

Northwest Territories	19. Pouce Coupé	42. Nevis
1. Pointed Mountain	20. Nipisi	43. Fenn-Big Valley
	21. Mitsue	44. Provost
British Columbia	22. Swan Hills	45. Innisfail
2. Beaver River	23. Virginia Hills	46. Harmattan-Elkton
Petitot River	24. Judy Creek	47. Carstairs
4. Komie	25. Carson Creek	48, Crossfield East
5. Kotcho Lake	26. Simonette	49. Wildcat Hills
6. Clarke Lake	27. Windfall	50. Medicine Hat
7. Junior	28. Redwater	51. Pincher Creek
8. Jedney	29. Golden Spike	52. Waterton
9. Nig Creek	30. Edson	53. Pendant d'Oreille
10. Milligan Creek	31. Pembina	54. Smith Coulee
11. Blueberry	32. Leduc-Woodbend	on. dimin obdieg
12. Kobes-Townsend	33. Willesden Green	Saskatchewan
13. Peejay	34. Wizard Lake	55. Beacon Hill
14. Boundary Lake	35. Bonnie Glen	56. Dodsland
15. Fort St. John	36. Westerose South	57. Smiley-Dewar
	37. Brazeau River	58. Coleville
Alberta	38. Viking-Kinsella	59. Milton
16. Zama Lake	39. Lloydminster	60. Hatton
17. Rainbow Lake	40. Homeglen-Rimbey	61. Instow
18. Worsley	41. Strachan	62. Fosterton

13.4.3 Production

Alberta provided over 80% of the marketable gas in Canada in 1972, as it has for at least the past decade. British Columbia continued to supply about 15%, a level reached in 1967. Production in both provinces has continued to expand since the inception of the interprovincial pipelines and toward the end of 1973 additional stimulus was provided by the increased pricing policies of the provincial governments. Production from the other natural gas producing provinces has remained static or declined.

In 1972, the Pointed Mountain field in the southwestern corner of the Northwest Territories came into production as a new Canadian source. This field now delivers approximately 2.5 MMcf a month into the Westcoast Transmission Company system for markets in British Columbia.

13.4.4 Transportation

The authorization of large-volume gas removal from British Columbia and Alberta beginning in the mid-1950s, led to the construction of the first major gas transmission lines in Canada. Today, the complete system serves the major Canadian centres of population from Vancouver to Montreal and transports gas to the international border for US markets in various areas from California to New England. The next expansion of the system will be directed to the opening up of Arctic gas resources. The initial economic, engineering and environmental studies for a Mackenzie Valley gas pipeline were completed in 1973 in preparation for filing before Canadian and US regulatory authorities in the spring of 1974. Research was also being carried out into the feasibility of transporting natural gas from the Arctic islands.

Most of the Canadian natural gas now being produced must be processed before it can be considered marketable. Only about 10% of the supply is marketed directly from the wellhead into a distribution or transmission line. Gathering lines take raw gas from the producing wells to a collection point on a transmission system or to the inlet of a gas processing plant. Transmission systems receive marketable gas from field gathering lines or plants and transport it through large-diameter pipelines to Canadian distribution companies or to interconnected US transmission pipelines at the international border. Distribution systems serve the ultimate customers in the centres of population. With the introduction in recent years of the PVC (polyvinylchloride) small-diameter pipe, distribution companies — especially in the western provinces — have been rapidly extending their service to rural customers by means of this easily laid durable pipe. At the end of 1972, a total of 67,300 miles of pipeline were in opera-